Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

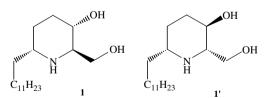
A versatile synthesis of (+)-deoxoprosopinine and (-)-deoxoprosophylline

Enzo B. Arévalo-García^{a,*}, Juan Carlos Colmenares^b

^a Department of Chemistry, C.W. Post. L.I.U. Long Island, NY 11548, USA ^b Loker Hydrocarbon Research Institute, USC, Los Angeles, CA 90089, USA

ARTICLE INFO

ABSTRACT


Article history: Received 11 June 2008 Revised 12 September 2008 Accepted 16 September 2008 Available online 20 September 2008 An efficient synthesis of (+)-deoxoprosopinine and (–)-deoxoprosophylline was achieved from *N*-benzyl-*N*-Boc serine derivatives (**7**) and (**7**').

© 2008 Elsevier Ltd. All rights reserved.

etrahedro

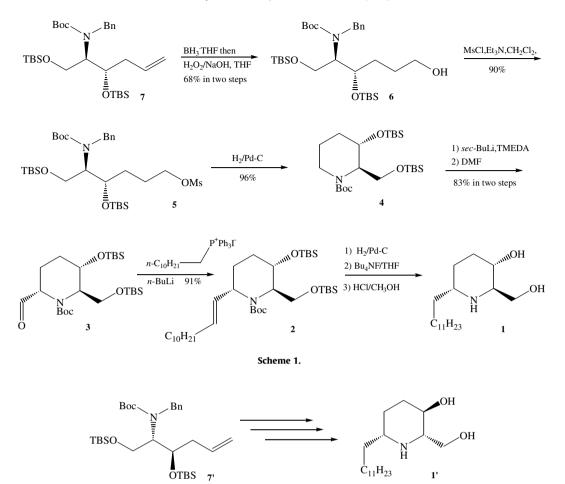
Keywords: Piperidine Serine Deoxoprosopinine Deoxoprosophylline

The piperidine ring is a structural feature present in many natural products of biological interest.¹ In the last decade, there has been a growing interest in the enantioselective synthesis of compounds bearing that ring due to the importance of this kind of heterocyclic compounds for the pharmaceutical industry; among these alkaloids are (+)-deoxoprosopinine (1) and (-)-deoxoprosophylline (1'). To date, several methods for their synthesis have been published.^{2,3} Due to the biological importance of these two compounds as well as their structural characteristics, our goal was to find a new method that could use available amino acids and smooth conditions for their synthesis. In this Letter, we report the application of a novel methodology for the synthesis of (+)-deoxoprosopinine and (-)-deoxoprosophylline based on the use of allyl derivatives of N-protected amino aldehydes.

As outlined in Scheme 1, our approach starts with *N*-benzyl-*N*-Boc serine derivative **7**.⁴ This compound was subjected to hydroboration (BH_3 -THF) and subsequently treated with NaOH/H₂O₂

affording alcohol 6 with good regioselectivity (8:1). Mesylation of alcohol 6 generated compound 5 (90% yield). Catalytic hydrogenation of the benzyl group in **5** produced an amine that displaced the mesyl group to yield 4 (96% yield). Employing Beak's methodology,⁵ the side chain at C-6 of **4** was introduced as follows: its treatment with sec-BuLi/TMEDA at -30 °C and reaction of the carbanion formed with DMF (-78 °C) afforded a mixture of aldehydes in a 92:8 ratio from which **3** was obtained in 83% vield after purification by flash column chromatography. Product **3** was then rapidly reacted with the ylide generated in situ from undecyltriphenylphosphonium iodide and n-BuLi/THF at -78 °C obtaining compound 2 (91% yield). The formation of this product was highly stereospecific with only a single diasteroisomer observed. Then, in similar fashion as with **3**, compound **2** was immediately used in the final steps of our synthesis; they included catalytic hydrogenation of product 2 (1 atm H₂, 10% Pd–C, EtOH, rt) followed by the cleavage of all protecting groups by Bu₄NF/THF and HCl/MeOH obtaining **1** in 38% overall yield; $mp = 87-89 \circ C$ (lit.⁷ = 89-90 $\circ C$); $[\alpha]_{D}^{25}$ +11.7 (c 0.01, CHCl₃), (lit.⁷ $[\alpha]_{D}^{23}$ +12.2 (c 0.015, CHCl₃).

In the same style (as in the synthesis of **1**), compound **7**⁶ was converted to (–)-deoxoprosophylline (**1**[']) with an overall yield of 32% yield; mp = 88–90 °C (lit.⁷ = 90.5 °C); $[\alpha]_D^{25}$ –14.1 (*c* 0.4, CHCl₃), (lit.⁷ $[\alpha]_D^{21}$ –13.9 (*c* 0.25, CHCl₃) (Scheme 2).


The physical and spectroscopic data of our synthesized compounds 1 and 1' were in agreement with those described in the literature.⁷

In conclusion, we have developed a versatile, stereocontrolled synthesis of (-)-deoxoprosophylline and (+)-deoxoprosopinine from starting materials **7** and **7**'; this synthetic strategy could be used for the synthesis of other similar alkaloids.⁸

^{*} Corresponding author. Tel.: +1 5164245959; fax: +1 5162993944. *E-mail address:* barevalo@excite.com (E. B. Arévalo-García).

^{0040-4039/\$ -} see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.09.093

Scheme 2.

Acknowledgements

The authors are grateful to C.W. Post Long Island University Chemistry Department and to Loker Hydrocarbon Research Institute for partial support of this work.

References and notes

- For reviews see: (a) Weintraub, P. M.; Sabd, J. S.; Kane, J. M.; Borcherding, D. R. Tetrahedron 2003, 59, 2953; (b) Strunz, G. M.; Findlay, J. A. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 26, pp 89–183; (c) Laschat, S.; Dickner, T. Synthesis 2000, 1781; (d) Foder, G. B.; Colasanti, B. The Pyridine and Piperidine Alkaloids: Chemistry and Pharmacology. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, 1985; 3, p 1; (e) Schneider, M. J. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: Oxford, 1996; pp 155–299; (f) Wang, C. J.; Wuonola, M. A. Org. Prep. Proced. Int. 1992, 24, 585.
- Previous synthesis of deoxoprosopinine: (a) Pandey, S. K.; Kumar, P. Synlett 2007, 2894; (b) Fuhshuku, K.; Mori, K. Tetrahedron: Asymmetry 2007, 18, 2104; (c) Wang, Q.; Sasaki, A. J. Org. Chem. 2004, 69, 4767; (d) Comins, D.; Sandelier, M. J.; Grillo, T. A. J. Org. Chem. 2001, 66, 6829; (e) Agami, C.; Couty, F.; Mathieu, H. Tetrahedron Lett. 1998, 39, 3505; (f) Yuasa, Y.; Ando, J.; Shibuya, S. J. Chem. Soc., Perkin Trans. 1 1996, 793; (g) Kadota, I.; Kawada, M.; Muramatsu, Y.; Yamamoto, Y. Tetrahedron Lett. 1997, 38, 7469; (h) Tadano, K.; Takao, K.; Nigawara, Y.; Nishino, E.; Takagi, I.; Maeda, K.; Ogawa, S. Synlett 1993, 565; (i) Saitoh, Y.; Moriyama, Y.; Takahashi, T. Tetrahedron Lett. 1980, 21, 75; (j) Saitoh, Y.; Moriyama, Y.; Hirota, H.; Takahashi, T.; Khuong-Huu, Q. Bull. Chem. Soc. Jpn. 1981, 54, 488.
- Previous synthesis of deoxoprosophylline: (a) Andrés, J. M.; Pedrosa, R.; Pérez-Encabo, A. Eur. J. Org. Chem. 2007, 1803; (b) Chavan, S. P.; Praveen, C. Tetrahedron Lett. 2004, 45, 421; (c) Datta, A.; Kumar, J. S. R.; Roy, S. Tetrahedron 2001, 57,

1169; (d) Jourdant, A.; Zhu, J. *Tetrahedron Lett.* **2001**, 42, 3431; (e) Koulocheri, S. D.; Haroutounian, S. A. *Tetrahedron Lett.* **1999**, 40, 6869; (f) Yang, C.; Liao, L.; Xu, Y.; Zhang, H.; Xia, P.; Zhou, W. *Tetrahedron: Asymmetry* **1999**, 10, 2311; (g) Yang, C.-F.; Xu, Y.-M.; Liao, L.-X.; Zhou, W.-S. *Tetrahedron Lett.* **1998**, 39, 9227; (h) Dransfield, P. J.; Gore, P. M.; Shipman, M.; Slawin, A. M. Z. *Chem. Commun.* **2002**, 150; (i) Luker, T.; Hiemstra, H.; Speckamp, W. N. J. Org. *Chem.* **1997**, 62, 3592; (j) Herdeis, C.; Telser, J. *Eur. J. Org. Chem.* **1999**, 1407; (k) Jourdant, A.; Zhu, J. *Heterocycles* **2004**, 64, 249; (l) Ma, N.; Ma, D. *Tetrahedron: Asymmetry* **2003**, 14, 1403.

- 4. Ginesta, X.; Pericas, M. A.; Riera, A. Synth. Commun. 2005, 35, 289.
- 5. Wilkinson, T.; Stehle, N. W.; Beak, P. J. C. Org. Lett. 2000, 2, 155.
- 6. The derivative is obtained via (L)-serine methyl ester hydrochloride was reacted with 1 equiv of benzaldehyde and 1 equiv of Et₃N/CH₃OH, followed by reduction of the resulting mine with NaBH₄. The resulting N-monoprotected methyl ester is reacted with (Boc)₂O/Et₃N/THF and then with TBSCI/Imidazole obtaining an N-diprotected, OTBS serine derivative. This product is then treated with DIBAL-H at -40 °C obtaining the desired amino aldehyde. To a suspension of this aldehyde/zinc powder/aqueous solution of NH₄Cl in THF is added allyl bromide at -10 °C; after stirring at room temperature, until the substrate disappeared, the reaction mixture was extracted with Et₂O; then the combined extracts were dried and evaporated in vacuo. The final product is obtained as a mixture of *syn*(minor) and *anti*(major) adducts that can be separated by column chromatography after protection of the hydroxyl moiety with the TBS group.
- (a) Saitoh, Y.; Moriyama, Y.; Takahashi, T.; Khuong-Huu, Q. Tetrahedron Lett. 1980, 21, 75; (b) Fuhshuku, K.; Mori, K. Tetrahedron: Asymmetry 2007, 18, 2104; (c) Takao, K.; Nigawara, Y.; Nishino, E.; Takagi, I.; Maeda, K.; Tadano, K.; Ogawa, S. Tetrahedron 1994, 50, 5681; (d) Daniel, L.; Comins, D.; SandelierGrillo, M. J.; Grillo, T. A. J. Org. Chem. 2001, 66, 6829.
- 8. It is noteworthy that isomerization on silica gel⁵ of the aldehyde 3 (and also 3'), generates the corresponding diastereomeric products with great regioselectivity. This fact leads to the synthesis of the alkaloids (-)-deoxoprosopinine and (+)-deoxoprosphyline in a similar straight way as presented in Schemes 1 and 2.